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ABSTR;ACT

We present a population of 56 linear, two-dimensional elliptic partial

differential equations (PDEs) suitable for evaluating numerical methods and

software. Forty two of the PDEs are parameterized which allows much larger

populationsto bemade;189 specific cases are presented here along with solu-

tions (some are only approximate). Many of the PDEs are artifically created

so as to exhibit various mathematical behaviors of interest; the others are

taken from "real world" problems in various ways. The population has been

structured by introducing measures of complexity of the operator, boundary

conditions, solution and problem. The PDEs are first presented in mathematical

terms along with contour plots of the 189 specific solutions. Machine readable

descriptions are given in Part 2, IIRC Technical Summary Report #2079; many of

the PDEs involve lengthy expressions and about a dozen involve extensive

tabulations of approximate solutions.
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SIGNIFICANCE AND EXPLANATION

A population of 56 linear, two-dimensional elliptic partial differential

equations is given. Forty two of them are parameterized and 189 specific

cases are presented in mathematical terms, with contour plots and in

machine readable form. Some of the equations are very complicated and over

8800 lines are needed for the complete, machine readable definitions of the

problems. The objective is to provide a population for the scientific evalua-

tion of the effectiveness of numerical methods for solving such equations.

The population has been structured by introducing complexity measures of

various problem features. It is anticipated that the structuring along with

the expandability (due to the parameterizations) will allow this population

to be and as the basis for statistical or systematic evaluations of numerical

methods and/or software over a wide range of situations.
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A POPULATION OF

LINEAR, SECOND ORDER, ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

ON RECTANGULAR DOMAINS - PART I

John R. Rice, Elias N. Houstis and Wayne R. Dyksen

1. INTRODUCTION

The motivation for creating this PDE population is for use in the evaluation

of numerical methods and PDE software. The need and rationale for a systematic

approach to such evaluations is given in [-ice, 1979], [Houstis and Rice, 1980],

[Crowder, Dembo and Mulvey, 19791; it suffic.es here to say that a properly chosen

problem population is an essential ingredient for a sound evaluation of numerical

methods and software.

A useful population of PDEs is inevitably very lengthy and this one is no

exception as one sees from the last two appendices. Thus in the body of this paper

we discuss the sources of the PDEs, how they are described in the appendices and

how a structure has been created in the population through the use of quantitative

(but subjective) measures of features.

It is important that one be able to create relevant subpopulations as one

inevitably wants to evaluate methods for particular subclasses of PDEs (e.g.,

separable, with singularities or with mixed boundary conditions). Experience shows

that no one universal method is nest for all PDEs (even in this rather restricted

context) and one of the important tasks of research is to create and/or identify

methods that are especially efficient for particular classes of PDEs. Once one

embarks on such a task one sees that this population, which originally mnight seem

large and bulky, is actually rather small for the uses to be made of it. It is

only the fact that it can be substantially expanded in various directions through

the parameterization that gives one ho-e that it is adequate for a wide variety of

evaluations.

Sponsored by tLe United States Army under Contract Nos. DAAG29-75-C-0024 and
DAAG29-80-C-041. This material is based upon work supported by the National
Science Foundation under Grant Nos. .C77-01408 and MCS79-01437.
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2. CHARACTERISTICS OF THE PROBLEMS.

A source parameter is assigned to each PDE which ranges from 0 (artificial

problem) to 100 (actual real world problem). This feature, as the others introduced..

later, is subjective in nature and the values given must be taken as approximate

indications of our intuitive feelings. The PDE u+u 1 might be complYteYs

artificial for one person and be the actual applications PDE for another. We havc

at least tried to be consistant in these values.

2.1. Sources

Many problems have been normalized so the maximum value of the solution is

1.0 and all have this value between .1 and 100. Many of the domains have been

standardized to the unit square, 0 < x,y < 1 The sources of the PDEs are:

A. Problems used in previous studies. Nine problems are included which i

were used by [Eisenstat dnd Schultz, 1973] or [Houstis et al, 1975 and 1978].

Subsets of this population have been used by [Houstis and Papatheodorou, 1977 and

1979] and [Lynch and Rice, 1978]. Some of these PDEs have had parameters added

and all have been normalized so the maximum value of the solution is about 1.0.

B. Artifical Problems. Many problems have been created just to exhibit

variour mathematical behaviors of interest (e.g. singularities, oscillations or

wave fronts). Such behaviors are important for theory or application (or both;

and one needs to have them present in the population in an easily identifiable

manner.

C. Problems adapted from the "real world". A persistent difficult': is the

desire to have PDEs which represent the "real world" and the necessit-y to kno.-

their true solutions. Among the strategies to adapt real w-orld nrbesw

have used: U
(i) choosing explicit functions which model the rh:vsical solutions an4 th"cr

determining appropriate boundary conditions and/or right side to nak e

this the true solution.

-2-



(ii) using truncated series expansions (of high accuracy) with appropriate

small modifications in the boundary conditions or right side.

(iii) solving nonlinear problems approximately, then substituting the

tabulated numerical solution into the operator (using quadratic inter-

polation from a 10 by 10 grid) to obtain a linear problem which is,

turn, solved approximately. In these cases the true solution is not

known, but the machine readable population contains tabulated values of
A

a hopefully accurate numerical solution.

2.2 Problem Features and Comlexit y Classifications. we identify as problem

features the smoothness and local variation of operator, the boundary conditions an4

the solution. These features are quantified on a one-dimensional scale of 0 to 1J2

even though there are rather independent properties that can be called smoothness or

local variation. These features are measured subjectively from the following de-

scriptions of the scale.

Smoothness. This refers to the mathematical properties of the functions or

operators involved. Key points on the scale are:

00 = entire functions or constants

10 = analytic; very well behaved

30 = very smooth, some higher derivative (5 or so) discontinuity possible

50 = still smooth, third derivative discontinuity possible

70 = not rough to the eye, but possibly only 1 continuous derivative

80 = continuous, functions might be theoretically smooth but rough on

a gross scale

90 possibly discontinuous, nearly singular functions or operators

100 = strong singularities like 1/x or 1/x

Local variation. This refers to how much a function changes (relative to

its size) in a small part of its domain. These variations might be oscillations.

wave fronts, peaks or boundary layers. Key points on the scale are:

3R
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00 = very smooth, uniform

10 mild variation, probably convex, some non-uniformity, e.g.

3x
sin(2y), e on [0,1]

25 = modest variation of oscillation; mild wave front or peak, e.g.

sin(6x), l/(l+lOOx 4 ) on [0,11

40 considerable peak or oscillation; change of magnitude occurs within

10-15% of domain

60 = sharp peaks, wave fronts, boundary layers or oscillations; 100% change

in magnitude occurs within 5% of domain

75 = practically a discontinuity in magnitude; continuity observable only

with a fine scale examination

90 = actual discontinuity in magnitide; extreme oscillation, step functions,

e.g. SIN(300x) on [0,1]

The overall problem complexity is represented by the average of the above

six feature measures. The problems in this population do not have complexities

exceeding 58 (only one exceeds 50), a level which might be interpreted as "rather

messy with one or two substantial complications". The problem feature measures

are included in the descriptions along with the source parameter.

Appendix 1 presents some summary information about the population. Tables

are given which

A. group the PDEs according to types of the operator and boundary conditions

(e.g. ielmholtzand Dirichlet or constant coefficients and mixed)

B. list the 56 PDEs with abbreviated feature descriptions

C. group the PDEs according to the smoothness of the operator and right side

= D. group the PDEs according to the smoothness of the solution.

=i A figure is also given which displays the overall problem complexity for the 189

specific PDEs.
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3. FORMAT OF PROBLEM DESCRIPTIONS

Appendix 2 contains a mathematical description of each PDE along with contour

plots for each specific instance included in the set of 189 PDEs. An example is

shown in Figure 1. The description begins with a problem number and source followed

by a mathematical description of the PDE. Then brief comments are given for the

operator, right side, boundary conditions, solution and parameters (if any). Some- I

times functions appearing in the mathematical description are defined in these

comments.

Four generic functions are used:

f(x,v) = right side of PDE determined so that the given true solution is

correct.

f(x),g(y) = right sides of boundary conditions determined so that the given

true solution is correct.

T(x,v) the true solution, used in the coefficients of some PDEs derived

from nonlinear problems.

r(x,y) = an approximate solution used in some PDEs whose true solution is p

unknown.

Contour plots are given for one or more particular PDEs for each problem.

The border of the plots contains the following information:

(i) values of the parameters

(ii) maximum and minimum values of the solution; the contours are equi-

(iii) the classification parameters in the form

S.P 01.02 B.B2 SI.S2

where

5-9
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S = source parameter P = problem complexity

al = smoothness feature a2 = local variation featurer

and c = 0 for the operator, B for the boundary contitions,

S for the solution.
i-- -~PROS 28 Artifical ".

(wu) + (Wu) - I where w C if 0Of.X.y.S 1*
DOMAIN [-1,11 x l other'ise .

sc u= o
TRUE n oun IiII

= Operator- Sr.lf-adjoint, discontinuous coefficients. V7 I' ,
Right side: Constant

Boundary ccnditions: Dirichlet. hoogeneous/i~~
Solution: Approximate solutions given for a = 1. 10. j, -

100. strong wave fronts for a >> 1. >> 1./l '

Parameter: a adjusts size of discontinuity in operator ,

coefficients which introduces large, sharp jumps in

solution. X 'M- AN 3=

h;Am jmiA __________ _= in - Am M -i

Figure 1. An example of the mathematical description of a PDE along with some
contours.

The machine readable description of the PDE population consists of two

files: EQNFIL and MACFIL. EQNFIL has 189 entries which are either complete

statements of the PDE in the ELLPACK language (see [Boisvert, Houstis and Rice,

19791) or a reference to an entry in MACFIL with values given for parameters. See

Figure 2 for a short example. The informatioz. 4iven starts with the problem n T=ber,

feature parameter values and a code for various attributes of the PDE which are

used within the ELLPACK system. Then ELLPACK language crde is given for the oper-

ator and boundary conditions; this code should be self explanatory once one sees

that UXX$ represents u, etc. Finally, there is 5 Fortran -ode for any. functions

that appear in the operator, right side or boundary conditions. Thi - latter code

averages about 20 lines and can be as much as IS0 lines (excluding tables that are

part of some problems). These descriptioxis are given in Part 2 of this report,

MRC Technical Summary Report No. 2079
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MACFIL entries are just like EQNFIL descriptions of a PDE except th-at thec

places where parameter values are to be substituted are indicated b-:r &A, &B, etc.

A refers to the first parameter, B the second and so on. There are sMeha ort-

than 8500 lines in these two files.

K* 000.04 000.00 004.05 010.02
K * 2000200000020

1 1 TIJO DIPOIESOIS
I 1 OCS + (I.+Y*V)WYS - LM - Cl.4Y*Y)UYSg FCX.Y)
2 MIXED
2 W=0. 9 MIX)ED = C1.)IJ + ( 1.)X=( 0.27*EXPCY)

12 X=I. . MIXED - C1.)U *C-1.)IX =0.

2 Y-0. a MIXED = (1.)U + C 1.)UY =0.27*EXF CX)
2 Y=1I. . MIXED -C1.)U -I C-1.)UY 0.135.Ci(FAMQ2.-.)*CX*X-X)-2
3 FINCTIO4 TRtJE(X.Y)
3 --RUE 0.135.CEXPCX4Y)CXaX-X)-2af0CC1.4YOY)

13 PETURI
-~3 END

3 FL1TIOI F(X*Y)
3 F - 0.135s( C-4..X.XBX+15..X.X-14..X42.).WL0C1.4Yoy)

-13 S - 2..(XX-X)2)ocYYY.3Y-1.)/C1.4YOY)
3 PETM"

13 END

sEOR

I PROBLEM 3.

OEOR
*PARAHEER SET CW1.5)

CO00.43 090.60 000.00 070.40

&PRMEE ST 2(A--2.5)
I* 000.35 030.50 00.00 060.20

eat3'2.S/

OPARATER SET 3CA=3.S)
* 000.28 070.30 000.00 050.35

OPAWEER SET 4(A4.S)

VWtD34.5.,

Figure 2. A sample from EQNFIL showing a short PDE description in mnachine rai
form and a reference to a similar descrintion in -T
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APPENDIX ONE: TABULATIONS OF POPULATION CHARACTERISTICS

Table 1

V Classifications of Problems
According to Operator and Boundary Conditions

O t I Constant Coefficients Non-Constant Coefficients
= Operator

Dirichlet Neumann Mixed Dirichlet Neumann Mixed

Laplace 3, 4, 7, 4, 31, 35,
B, 10, 11, 38,55
17, 33, 34,
35, 47, 50

Helmholtz 9, 41, 53 6, 20, 39,
Type 44, 45, 46,

49

Self-Adjoint 5 1, 13, 22, 1, 19, 23,
25, 28, 54 52

General 14, 48 42 43 12, 15, 16, 2, 23, 24,
18, 21, 26, 40, 51
27, 29, 30,
32, 36 37,- 56'

Note that problems 1, 4, and 35 appear in two places in the table since they

have boundary conditions of the form

u + auV =g

and hence have Dirichlet boundary conditions for a=0.

Al-i
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Table 2

Problem Characteristics

The principal characteristics are tabulated below using the following
encodings:

A Analytic N Neumann Boundary Condition
BL Boundary Layer NS Nearly Singular
C Constant (coefficients) 0 Oscillatory
CC Computationally Complex P Parameterized or Peaked I

-- D Dirichlet Boundary Condition S Singular (infinite)
Aif.| E Entire SD Singular Derivative

H Homogeneous U Unknown
J Jump Discontinuity VS Variable Smoothness
M Mixed Boundary Condition WF Wave Front

Problem Right Solution Boundary
Number Operator Side Conditions Domain

IP A E E M Unit Square
2 E A A M, H Unit Square
3P C S,SD S,SD DH Unit Square
4P C E E M Unit Square
5P C E E D,H Unit Square
6 E,NS A A, 0 D,H Unit Square
7 C C SD D, H Unit Square

8P C SD SDWF D Unit Square
9P C,NS ENS EBL D Unit Square
10p C EP E.P D,H Unit Square
lip C A,O A.O D Unit Square
12P E,O E.0 E, 0 D Unit Square

1 13 J S SD D Unit Square
14P C S S D Unit Square
15P ANS S SD D Unit Square L
18P A,NS C U,BL D,H Variable Square
17P C ANS A, NS,WF D Unit Square
18P E ANS A, NS,WF D Unit Square
19P S S E MH Square
20P NS, P,CC P EP D Rectangle
21 E E E D Unit Square
22 SD S E D Unit Square
23P SD SD SDWF M, H Unit Square
24P S.NS S, NS U,P M,H Square
R5P SD S E DH Unit Square

A1-2

ia 1 l U I l I I ii = -A,.



Table 2

Problem Characteristics

Problem Right Solution Budr

Number Oprtr Side Conditions Dmi

26P A A U. SD D. H Variable Square
27 A. NS C U.,BL D,H Square
28P J C U,WF D,H Square
29P S H U. VS. BL D Unit Square
30P A. CC A, CC A, NS D Unit Square
31 C C E,(SD) M Square
32 A A E D,H Rectangle
33 C E E.,0 D Rectangle
34 C C E, (SD) D Square
35P C H E, .BL IV~ Square
36P S S A. BL DUnit Square
37 E E E D Unit Square
36P C H E. 0.VS D Rectangle
39P CC.,S CC, S U. BL D,.C Unit Square
40P E A A M Unit Square
41P C,NS SD, NS SD D.H Square
42P C H A. 0 N Variable Rectangle
43 C H E M Square
44P CC CC U. BL D,H Unit Square
45P C.,NS H U, BL D Unit Square
46P C. NS H U, BL D Variable Rectangle
47P C S SD,VS D Unit Square
48P CC CC U U Unit Square
49P CC CC U. SD. BL D. C Unit Square
50 C H E.O0 D Rectangle
51P S C U. SD, WF MH Unit Square
52P CC H U,O0 MC Unit Square
53P C, NS E. 0 E, 0 D Unit Square
54P E. CC S, CC SD.VS D Unit Square
55P C H S,VS,BL M Rectangle
56P S CC U.O0,(SD) M Rectangle

A1-3
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Table 3I! Classifications of Problems
According to Smoothness of the Operator and Right- Side

(A=Arialytic; C=Constants; CC=Computationally Compli-
c ated; DD =Disc ontiriuous Derivatives; E=Entire;
0=Oscillatory; P=Peak; S=Singular)

Oprator Riht-SideNubr

C E 1 4 5 8 42. 43, 45. 46, 50. 55

C A 11, 17
C DD 3,8.,41
C S 3. 14.47
C 0 6, 11,53

I C P 10
I E E 12.21,37IE A 2,6,.18,40

ES 154

A C162
A E 1

A A 26,30.32
A S 1

DD DD 13,23,25
I DD S 22, 25

S C 29,51,56
S S 1924,36
0 A 6
0 0 1 12

I C cc I17,18
S cc 56
cc C 52

cc cc 30, 39. 44,.48.49, 54
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Table 4

Classifications of Problems
_ Accordi~r to Smoothness of the Solution

Solution Smoothness Problem Numbers

Entire 1, 4, 5, 9, 10, 12, 19, 20, 21, 22,
25. 31, 32, 33, 34. 35. 37, 36. 43. 50,
53

Analytic 2, 6, 11. 17, 18, 30, 36. 40. 42

ISingular Derivatives 3. 7, 13, 14, 15, 41, 47, 51, 54, 56

Oscillatory 6. 11, 12, 33. 35, 38, 42. 50, 53. 58

Wave Front 8, 17. 16. 23. 28. 51

:oundar Laeriave 7., 9.3 1., 27. 29, 44. 45, 46, 49

Peak 1.02

[Tabled Solution 18, 24, 28, 27, 28, 29, 39, 44, 45, 48,
48, 49.,5

A1 -5
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APPENDIX TWO: MATHEMATICAL DESCRIPTIONS

IPROB 1 Artificial [7,12,13]

(e u) + (e'X'U ) - u/l + x + y) f ~ 71
yy 2

DOMAIN unit squareif//
BC u +au~ = g

TRUE .75evy sin (7x) sin (,ry) I~ H
Operator: Self-adjoint, analyticjRight side: Entire ~'
Boundary conditions: Mixed except for ax 0.
Solution: Entire, independent of ax.
Parameter: a introduces normal derivative into _

boundary conditions. P~E

f PROB 2 Artificial [12,13]
2 2 >

u +(1 + , )u -u -(I + y )u, f
xxyy V x

DOMAIN unit square
BC uu~ - N 1

_TUx+y 2 2 2
-~.135(ex +' (x -X) loq(l + y )

Operator: Entire
Right side: Analytic
Boundary conditions: Mixed
Solution: Analytic

1Parameter: None

ii PROB3 ArtifcialiI j13I
Righ sie snula fo a- --3

DOAI Bo uaycnitin sq rict ooeeu

- A

\Z-

' 'R 3-2WEM 3
t % .5 R=3.1

7 ~\n if I''T11
Ii ( 9

~ I I \ A
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PR8EM '$- 1

P ROB 4 Artificial [,12,13]
u + U 6xy e X (xy + x + v 3)
xx yy

DOMAIN unit square2
BC u=O for x*O; u-aL(y-y )u gfrx
TRUE X 2 2

3e (x -x)Hy -y)

Operator: Laplacer
Right side: Entire
Boundary conditions: Mixed except for a =0

Solution: Entire, independent of a
Parameter: a introduces normal derivative into
boundary conditions

PROB 5 Artificial [13,14] 18
4u +U - au f

DOMAIN unit square
BC u 0

TRUE 2(x 2 
-x) (cos(2iiy) -1) 8,

Operator: Constant coefficient, separable
Right side: Entire
Boundary conditions: Dirichiet, homogeneous
Parameter: a makes operator more singular without

affecting solution

PROBLEM 6

P ROB 6 Stratospheric physics [13,14,16]

u + u - (100+ cos (21rx) + sin (37ry) )u f
xx yy

DOMAIN unit square8
BC u =0
TRUE24

Operator: Entire, oscillatory, somewhat singular
Right side: Analytic
Boundary conditions: Dirichiet, homogeneous
Parameter: None

PROLEM 7

PROB 7 riialII
u +u =1 I

xx yy

DOMAIN unit square i
B3C u0 -9 0~
TRUE Approximate series solution gives 10 accuracy,

Operator: Laplace

Right side: Constant
Boundary condition: Dirichlet, homogeneous
Solution: Has loaarithmic. sinqUlarities at corners in

second derivatives; approximate solution is aIji
polynomial. ___________

:Nonc Am§j wM
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PROB 8 ~

EkDOMAIN un s~niaro
REBC uuF

T R UE ~(x),:(y) wee.~:

Du,-,rator: La I ace?
nicht side: JuS t coftifluous wia rlgnt anale ridqL.
B~oundary ccliitio!ns: Dirichlet2 [
S'olution: Wave front a 1 z-.: r7:fL .',-An:. t*Ij

recdons where it -;s tnt .~ . IL
Paramneter: it adlust, gihhand F'nai .000.. -

6R&E - 2 ~'2EM 6- PROBLEM 8- ~4
E ~ ~~~ ________ A=0.45)

:400

Ix Em-- X'm Al 2

~~6 AM----

x
PRO&EM 9- 1

P ROB O9 A:n ~ iil~3

DOMAIN 
':I.0-u

TRUE .7 x oi

E-11
I-- ut:,cwr o~<ic~e. ~* zcmew:10§ .1I

~ ~ *: :~Arc-:).. :~ ? I:au~~ 8r .IC. §

£sou~dar~ -jig

K -.

9- - 9-.~ iAr

- - . - ~ (:XC.3

-~t~Zt
S.l A l Am 1!.
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PROBLEM 10- 1
§(AIO-1.0. 8=0.5)PROB 1u Artificial [13]+ U =f

xx yy
DOMAIN unit square 8M

BC u2 2
TRUE -a[ (x-.5) 2

(x -x,(y -Y) N

Operator: Laplace .
Right side: Strongly peaked if a large, but entire.

Boundary condition: Dirichlet, homogeneous
Solution: Strongly peaked for large a.

Parameters: a adjusts strength of the peak, B moves x

it in the y-direction. r- z

".m . x "" 3m SAN
EMPR 1E0- 2 PROLEM 10- 3 PRB0LEH 10- 4§1=50.0. e--o.5) §,,oo.o. 8:0.6, (A,00.0. 8=0.51

;V A- S

:10 -50.0. f P=5x 0=0.117

. o. . in 3 1.4. AmM A iI 0EO

_________=__________ 1:0.0. 8417 P5OO. 017) _______________8______2171_

§ I

A m ww A Am 14 m .1 A .1W AM .

0 30

] 8

§~.



PROBLEM I I- 1

PROB 11 Artif icial I
u ~U f

DOMAIN unit square
BC Ug = g//

TRUE sin [a (x - y + 2) / (1 + (x -y + 2))]// .
Operator: Laplace/I
Right side: oscillatory, analytic
Boundary conditions: Dirichlet
Solution: Oscillatory
Parameter: ai adjusts frequency of oscillations

-W A .6 ~ 1t

PROBEM t- 2PROLEM 1- PROLEMn-

to7:

.~ . . m . i . m ~ .ao m ~ .W 0W .u mtoW Ltox

PROB 12OArtificia
u x + u yy+ (1 + sin(ctx))u - cos(ciy)u =f

DOMAIN unit square
BC U =gSi
TRUE cos(6y) + sin O(x - y) I

Operator: Oscillatory, Laplacian plus lower terms
Right side: Oscillatory, analytic
Boundary conditions: Dirichlet
Solution: Oscillatory, entireA
Parameter: ax adjusts oscillation in PDE coefficients.

8 adjust oscillation in the solution.

-RC8LEfl 12- I PROLEM 12- 3 -'M&EP 12- OMEN 12- 2 PROBLEM 12- S ~ OMEN 12- 6
:A=Pz. 2,=P1I (A=10.0. 8-Pl' A C0.8P LAP'. 8=10.91 (R=1.0. 8:-1Q.C1, :A= -. --

M
I - 8

A-i

0y 6:;;;nf ~ 4~~#
*1~ _0

.2 A W AM m AWx

- .~ ~. - .-. - 1lk



PRO (+ (x -.4) u ) +~ uf
+~ x x

DOMAIN unit square8
BC U g

TU2 22-v CYTRUE nnx+.3,.7+.5(x-."'),(x-.4') /(l+x)]l- -Wl e ~
Operator: Self-adjoint, discontinuous coefficients.
Right side: Line of singularities along x =0.4

Boundary conditions: Dirichiet/
Solution: Derivative in x is singular.
Parameter: None

PROB 14 Artificial g o
u + 2u + 3u - 4u -U fxx yy x y

DOMAIN unit square
18C U=0' Y=O; u=y, x=0; ug, x=l; u=l-.ci+zx-.81 for y=l.

TRUE y 8l .8z2  + aix-. 8 1  -) + xye'y(y -1)

Operator: Constant coefficients
Right side: Line of singularities at x .8

=Boundary conditions: Dirichlet, discontinuous derivative
BSolution: line of singularities of variable strength

along x =.8.

Parameter: ai adjusts strength of the singularity ____________

xPROLEM 14- 2 R.EM 14- 3 POLMI-I PO SI.11 (AZ. 1 5. 0.1.1 (R=0.2. B:1.5. C .341

P= IN50 I I W

PROLE is 2aa~ PROLE IS-NIS 4

TRU 2) -~a 1Jx2 2 -. S C1004

DOANu unor sqa

-~[ 4-'~ar codtosx Drcl- (x.1
Laplace: plu neryigu derivative tenu~rm

~-iranneters: 3r sinqularity, F adjusts

zaeae it solution. w AMu .lc

V - ===-2 -



~IIM Tension in a spring 131

xx yy 1-250y 50 y ~l8
DOMAIN 10,8] x [0,81 1 a'
BC u =0
TRUE unknown
Operator: Laplace plus nearly singular u term.

R-11-~ sid:sd: Constant, domain dependent. 9!I
Boundary conditions: Dirichlet, homogeneous IF
Solution: Approximate solutions given for 8 =1, 10. U
Paramieter: 2 adjusts the size of the domain and right r

omf.B '.6- 2M

- - P OB 17 Artificial
u + u f

xx yy 8.-
DOMAIN unit square
BC U =g
TRUE [y 2+(cl(Sx) 3/(l+(Bx)3))21

e + sin(x -y + .5)

Operator: Laplace

Right side: Large values for x near .15 I
Boundary conditions: Dirichlet 8
solution: Sharp wave front near x = .15, entire. -
Parameters: a, Q- adjust the strength and shape of theA

wave front.-

PM~E" .2- 1 PMR laN- I PMi 01- 2 PRBEP 10- 2 PRWEH 0- 3 PROBLM18- 3

11

j~ ~ A F /A

.- ,I

: ZM

V'atr Enir

Right side: Large val e o xrea 1
Eounary ondiions DirchlZ

f 11 4- (1 +. Xy U + cos (x) u e-u-3u



PROB 19Nonlnear laminar, non-Newtonian flow [1]

(wu ) + (wu)= f, w [T 2 + T2
X yy x y

DOMAIN [.5,11 x [.5,11
SC u0 for x,y1; u =0 for x=.5, ui=0 for y=.5
TRUE sin(- xsin X y !

Operator: Self-adjoint, possibly singular.
Right side: Possibly singular.
Boundary conditions: Mixed, homogeneous. H r
Solution: Entire, T similar to that of non-linear 3.
problem.

Parameter: -.5 < a < 1 is a physical parameter. __ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ vm:.OI 2 - -

From ' + u = e [1
7 RO 2 xx yy T

-- + U = f, w = e
xx yy

DOMAIN [0_.51 x f0,.75)
BC ug2 4TRUoE -100(x-.x, 2

TR 0E -10(-5 (x).; (y) + ax where v'x W e (x -X)

Operator:- Hejmholtz type, approximates nonlinear
operator.

Right side: Sharp, large values now- x = y = .5-
Boundary conditions: Dirichlet, homogeneous.
Solution: T 1as a peak at x -5
Parameter: a adjusts singularity of operator. ' t.

PROB 21 Artificial ________

PROB 21 , ,'

Au + Bu ++Cu , = ,AC-2T 2

DOMAIN unit square N N
BC U= g

- TRUE "x+y

Operator: Entire, has mixed derivative term.
Right side: Entire
Boundary conditions: Dirichlet
Solution: T is entirea:-
Parameter: None

PROB 22 Elastic-plastic torsion [151 S,
w(u + u ) + w u + w u = f, w defined below

yy x x y y
DOMAIN unit square
BC u~g
TRUE [17.06 + 3.62(x2 + y2)](X2- )(y2 --

Operator: Expanded form of self-adjust pr.iblem. discon-

tinuous coefficients. w =1/7996 if A < .0025
S/(236 + 19.4/A) if A > .0025 where A =

x YI
Right side: Singular
Rjndarv conditions: Dirichlet
solution: T is a quartic polynomial
Parameter: None i - qW i "



~~~~____W

PROB23 Nonlinear laminar, non-Newtonian flow [1]

w(u + u ) + w u + w u =f, see below for wxx yy X y y y
DOMAIN unit square
BC u,=0,x=O,l; u=2cos(7x) for y=O; ucos(Tx) for yl.

TRE('P(Y) + 1) cos (Trx) where p(Y) =1 f or
y < .5 - 5, = 0 for y > .5 + 6 and *P(y) is a
quintic polynomial for .5 - 6 < y < .5 + 6 so 0
has two continuous derivatives.

operator: Expanded from self-adjoint problem, analytic.
Right side: Analytic
Boundary conditions: Mixed
solution: Has jumps in third y-derivatives.
Parameters: Three cases for w given in terms of

TAT c1. w 1/(a+ A)
X Y fA/(a+$A)]

c 2 . w e /A

c 3. w =atanh(OA)/A

Physical parameters a,$ of (387.75,50) and
(554.5,.544) have been used in practice.

PR38LEM 23- 1 PROBLEMi 23- 2 PROBLEM 23- 3§(A=387.75, 4:0.0._C=1. D-4,10) § =5'4.5. 8:0.554. C=1. D=:0.101 A (:387.15. O=SO.. C=2. R=O.SJ

Si 2
I~ to

PR YE 23 *RBEM2-SPOBE03

SiE ,0cr

Xi (

A~2 -9 -

IM

~'!-~ - -m



PROBLEM 24-
(R=0.25. 8:10,C~.0

PRO d~I Friction in a br:ak snuv-. (31 -
x 3

u + , u - ~- : yh /h, h =sin (clTxy)

DOMAIN I .111 [.,1
BC au +u + u 0x y U
TRUE Unknown

Operator: Laplacian plus u term which is possibly

singular.
Right side: Analytic, possibly nearly singular.

Boundary conditions: Mixed, homogeneous.

Solution: Approximate solutions given for 8 cases.

Parameters: a, and y are physical parameter6.,

I.a = .25 6 = 100 Y = -.1 AM~ MD X~ AM

2.a = .25 a = 1000 Y= PR-E 2's .1A:0.25. 8:1000.. C=-O.101

3. a =.5 B=1 Y= -. 01

4. a =.5 B 10 -.

6. a l 1 10 Y-.
7. - 1 =100 Y =-1

8. 21 B1000 Y =-l

PROEtM 24- 3 X1 ~ * uc .o .

S 0= 81., C=-0.01) PROBLEM 24- 4 POBLE 24- 5

8 8n
.............0.b C

C.-:

-PROBLEM 24- 6 PROBLEM 24-7 PROBLEM 24- 8
(R=.00. 8=10.. C-0-.101 (5=1.00. 8=100.. C=-1.001 A=511.00. 8=1000.. CZ-1.00)

LZ H

(S ON U

AW I 6 n SM A o .0X.0W A 6 ;a . e 10m

1, 2-1

CNn -



___________________________________ PROBLEm 26- 1P ROB 25 Artificial LI)I xu -yU tu O -ax u acy u + (XY OLU f
DOMAIN unit square
BC U = 0
TRUE 3e X+Y (x-x2 (Y-2 U!i

Opertor:Variable smroothness, exnanded seif-adjoint u.
Right side: Variable smoothness[Boundary conditions: Dirichlet, homogeneous
Solution: Entire, does not depend on parameter a
Parameter: a affects smoothness of operator and right
side without affecting solution.

PROB 26 Viscous flow [3]12
u +u +Au =-6O0xx/B where B=(a+x ),A=6x(l+x )/B
xx yy x

*DOMAIN [0,o] I~ x O,ctJ
BC u =0
TRUE unknown

Operator: Laplacian plus u term. For a =1 it is
expansion of a self-adjoinA operator.

Right side: Analytic
*Boundary conditions: Dirichiet, homogeneous

Solution: Approximate solutions found for a =1,5
and 10.

Parameter: a is a physical parameter adjusting the
domain and entering the coefficients.

PROBLEm 26- 1 PROBLEM 26- 2 PROBLEt 26- 3
§ (R1) lS IA:10)

I! 8
iji6LE 0)(' -10

BC U 0

TRUE -in-ow I

Bondr PR o di272s Diriutio hmnof fus igr ~ 3~-____
J u -u -u +(coy)~ -lO IM

Sox xx ty 2 yn-;nrxm
x x--

* DO AIN .1,1 x (1,1]1 Br

BC u0



PROBLEM 28- 1

PROB 28 Artif icial
=1 were w~a if < x,y < .5

x x y y = 1 otherw~ise
DOMAIN [-I1 x 41
BC u0= 0

operator: Seif-adjoint, discontinuous coefficients.I
Right side: ConstantS
Boundary conditions: Dirichiet, homogeneous
solution: Approximate solutions given for a =1, 10,

100. Strong wave fronts for a >> 1. Z-;I

Parameter: a adjusts size of discontinuity in operator
coefficients whcinrdeslg, sharp jumps in

souin 
2i., ..m D I.Wo

PROBLEMI 28- 2 PRBEX6 R8E 9

solution I

c

Sol,

-~ -~-~ - ~PROBLEM 29- 2

PROB 29 Many physical interpretations [10]

u + u +- u =0
xx yy y y0

DOMAIN unit square
BC U = (x -y)/t
TRUE unkn~own
operz~tor: Laplace plus singular u term.
Right side: Homogeneous
Boundary conditions: Dirichlet
Solution: Five approximate solutions given, some are

difficult."7
Parameter: a changes physical application: a = 1,

potentials; a = -1 streamlines; a = 3, torsion

and a -3 or 5, stresses. a~*w AW .6m .100 I.M

PROBLEM 29- 3 PROBLEMl 29- 4 PROLEM 29- S

A0. R=S~.) I

0D
0 0

U §'
,.4

Co"L- I

am .m AM w Am w Am .t. ,A AM w .w Al AM 1.0 Am ;W w .wM 0

IC X
1.2-12

- -~--=----',~---~~=-v



44

[2+y-1)e ] [+ yl)l,~ +y [x(x-)cos(y)(6.)u

BOuNr conitis:airee

U = g

BC
TRUE 2

x + ax
PABLEI 30 4Y 1 PROBLEII 30 5 PROBLEM 30-

g[b..811.+ = 1 AO.0 2..x). R1..64 ,C1

independen copexte oftepolm

LIM
AM . X A AI SAN We M Am .60 AM m am Alm im A IM

X X'

PROBEM 3- 4PROBEM 0- 5PROLEM 0-

Am -m .6 -6 'Al -I AM AM A 00 A .0m OI W M
- X. X___ ---~~== ~ _ __~~



PROBLEM 31

PROB 31 Tempe.ature distribution [5]

Uxx yy =

DOMAIN [-1,1] x [-I,1]
BC u+UN g
T (x +y)/4 4 .821564 + .01440(x 4 6x2y 2 +y4)

+ .0000493(x8-28x6 y2 +70x4y428x2y6+y8)
12 10 2 8 4 6 6 4 8 2 101.00000064(x -66x y +495x y -924x y +495x y 66x

perator: Laplace 14
Right side: Constant

Boundary conditions: Mixed
Solution: Harmonic poly. expansion for homo. BC.
Parameter: None X

Stress in helical spring [51 PROEM 2,0PR B 3 3 M- 17 Mt-00

U + U + U fxx yy 5 -y y

DOMAIN (-.5,.5] x [-1,1]
BC u= 0
TRUE (ly 2)(l-4x2 ) (5_y 3 ) (.0004838y + .0010185) i /
Operator: Analytic 19C.
Right side: Analytic
Boundary conditions: Dirichlet, homogeneous
Solution: Polynomial obtained by Ritz method for a
physical problem. -

Parameter: The 5 in the operator is a value of a
physical parameter.

AM -Am .uPRRBLE 333Torsion on a shaft [5] . x . IN= -1.7169

xx yy

DOMAIN [0,11 x 1-1,11
BC u= g
TRUE p = 14 + -i3, q = 14 - V-3, r = (7-q)/(rviT3),

t(Y) = 1-y2, C(x) = e px - e "qx. B(x) = (7-p)r/16C(x),

A(X) = rC(x) + e TRUE = t(y)[A(x) + t(y)B( x)]
Operator: Laplace
Right side: Entire § .
Boundary conditions: Dirichlet
Solution: Entire

:".00 . I7 .m-
X

PRO3E, 34.P ROB 34 From infinite region problem [5]
u +u U -
xx yy

DOMAIN [-1,1] x [-1,11
BC U =g +y)4 y /19 \

-TU .295776 - (x 2y)/ 14476(x _6X 2  4 +y)/19- f
8- 6 2 4 4 2 6 8 l+ 429(x -28x y +70x y -28x y +y )/319424 I / . ,

Operators: Laplace
Right side: constant
Boundary conditions: Dirichlet '
Solution: Harmonie- polynomial expansion for I .ho~moq(2r, - ;ond) -nnitions .

- .- .
A AM

A2 -- 4=- - A = --=



Torsion for a beam [51 7 -/ y / \
uX + U =0 / '•

xx yy . \

DOMAIN [-1,1. x g for X i, k

BC u=g for y= 1, (l+a)u+uctN  =

TRUE 1.1786 - .180 1 + (,006)q S . p
px,y 6x q(x,y) y +70x y 28xy +y

Operator: Laplace, homogeneous V-1
Right side: Zero
Boundary conditions: Mixed, Dirichlet for a 0.

Solution: Harmonic polynomial combination.
Parameter: a adjusts contribution of mixed boundary \ (

condition; a fo0 is the physical problem. 
DW!Mr 3S- 2 PM84EM 35- 3 ORMLE' 35- 4 3

2/ -,, o - \ \.. ,\i

(i + 8) +--u--- u --

TRE i( e8 y \ " \' 2 -

10a

F 
..(no

Rih sze:Anlyicexep fr = 0 thnsigl r~ /

PROEL; 36-

PROB 36 Adapted from Problem 27. I

(l +~ - + 1 + ctyU f
xx X+Ct 'X (x4-a) 2  yy xa y 9 N "'.

DOMAIN unit square
BC Ug = 

"

TRUE 1 -8)e~ + alo (x + a)

Operator: Possibly singular coefficients for a =0.

Right side: Analytic except for a = 0; then singular.

Boundary conditions: Dirichlet

Solution: Logarithmic singularity for a = 0 .

Parameters: a adjusts distance of singularity from

domain, ^ adjusts relative size of exponential and

loqarithmic terms in solution. 
o 2X

PPZKE? 36- 3 P- M 36- 4

- 6-i fl \cs " : _

77

I8

II



.W1t0tt' 3-

PROB From nonlinear minimal surface [1]

Au + Bu + Cu =f, A, (l+T B B-2TxT ,C (1+T)

DOMAIN unit square 4-
BC U =g

TRU (x,y) =(x - 3Y)2Xe

operator: Includes crossdeiave
Right side: Entire
Boundary conditions: Diile
Solution: Entire

Parameter. None

I PROB 38 Electrostatics (11]
+ u =0

xx yy

DOMAIN [-Tr/2,n/2] x [0,1]
BC u~g for x=±n/2,y=1; u y=g for y=O
TRUE - V2 c L+

e cos [(2a+l)xlsinht(2c+l)y1/ (2cz+l)

operator: Laplace, homogeneous
Right side: Zero
Boundary conditions: Mixed
Solution: Entire, may be oscillatory.
Parameter: ai adjusts the oscillations.

V 1 FEAI*RES; 000.09 000.00 000.20 006.25
I N- -.5w8 tHIXZ 52

ORO8LE" 38- 2

IJ Ff,1u~E: 000.13 000.00 000.30 01C.'40

MIN= -5.3877 MRX 5.538

nROLEtr 30- 3

A~~~~~~~ FVi'-.RS-. 000.26 3.5O 6 1S8
MIN= -4075.2416 'g~v= 2258.368S

-7 ~ -An.~ * ~ za



PROB 39From nonlinear problemr (4]
2 2

U x+ u + [l-h(x) w(x,y) ]/su =0
yy

DOMAIN unit square
BC u1
TRUE unknown
Operator: Helmholtz type, homogeneous
Right side: Zero
Boundary conditions: Dirichiet, constant
Solution: Approximate solution w(x,y) calculated and
tabulated for 5 cases.

Parameters: h(x) = 1/x for a = .5,1 (Cases 1 and 2)
x

h(x) = e for 8 .25,.5,1 (Cases 3, 4 and 5)
-PROBLEM 39- 1 PROBLEM 39- 2 PROBLEM 39- 3

Sc (X]I/X OQ. H( J=/X IB--.25 M(X=EX(X0

2k§

u+ (l~x 6

LO)

PROB 40- 4ad exapLE 17]
8=40. t(X)=W(~l lyu H= W

yy x

'DOMAIN

BC ~ ~ ~ ~ ~ ~ ~ POE 40g fo1oo ,a+u= o = r1
TRUE ~ Haaar' exml [17]() +2x~)(+xy-

IFnr DOixed uni sqar

ImI
TR E lg (-+)(~~ + ~ ~ ~ -e 2(x-N-=- 2+x--

-nerator: Entire



PROB 41 2 201 _________

U +U u -U r

DOMAIN (0,17] x 10,-r]-4
aCU u= 0/

TRE approximate solution accuracy depends on B '

x_____ 4 sin[(2k-l)xlcosh[(2k-1)(y-ir/2)I I- H1c I

k=1 (2k-i) cosh[(2k-l)ir/2] )jI
Operator: Helmholtz I~
Right side: Series for function with singularities.___________
Boundary conditions: Dirichiet, homogeneous. i
Solution: Infiinite series converging like

lk.The solution has derivative sinqularities. PRLM412
Parameters: a~ adjust u term, possibly makes operator . A10 8--10)

nearly singular. 6 is number of terms in series.

- PROB u42uArtificial [201 .ji

DOMAIN [cz,S] x 10,1] Ii
BC U = g

4' 2

Operator: Constant coefficients, homogeneous. 1'"
Right side: Zero

PP A 4! - 3Boundary conditions: Neumann (but PDE solution unique)
Solution: aAlt2 .:. -s 11 a t as - increases.
Parameters: (a.) for domain, y adjusts oscillations. /

~~8L~RWfl 422- 1 j
I~~~lX:0 3.2-8 1 1.:. _C4.-&m -71 .11.I r , n W 1Ft I; .17 LijMII

MI- .j2 iidI/A-C 0:..C.IC
'%ES 00.0 W0.0 /C:' ,

-6.1I I:6397

71 A ;- IW .. ;1 1= ACi~



ROB 43Artificial [20]
xx yy x Sk

DOMAIN [0, 1 [0 EOir I
BC u=0 for x=0, V =O,1T; u-u %/2 sin(y+Tr/4) for x=7! -,/

TRE e(X sinh (V~x/2 )siny -,

sinh (AS-r/2) I

Operator: Constant coefficient, homogeneous. K~~

Right side: Zero
Boundary conditions- MIixed
Solution: Entire
Parameters: None 

6

PROB 44 From nonlinear :problem ju
U +u + WU W

xx yy

DOM A IN unit square
BC U 0
TRUE unknown

Operator: Helmholtz type
Right side: Complicated
Boundary conditions: Dirichiet, homogeneous

Solution: Approximate solution given for r =r~c,y)

tabulated from a solution to the nonlinear problem; r /

should be u,

w (x'y) = -a(1-r) e yr(yri,- ~* N

Parameters: oL,8, y and 5 are physical parameters.

Four cases are given: I

1. a 1.425 3= 1 y=.5 5 =2 ;l\'

2. a 10 3 =1 y=.5 5 = 2S

3. a 1.425 3 - 6 = 25-

4. =1.425 3 - 5 =2

_____%_.24z Oz2 :zX4.. Or? § (ti42 8- . r~-2!

~ s:: ___ ____ ____ ____ ____ ____ ___ __...........___

§ ____ _____§Jigf

IIA C0;ui - I

,~ U ~ N ~ \'1II~ii'!_Ii0

_____ZW .-' Am~:

=:. -1-,'
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jPROB 45 Nonlinear pth order reaction (20]1

_ + +U - ar u 0
xx yy 

-- -

HE DOMAIN unit square
BC U =g
TRUE Unknown
Operator: Helmholtz type, homogeneous.

SRight side: Zero '\
SBoundary conditions: Dirichiet
SSolution: Approximate solution given for r =r(x,y) ~ *

tbulated from a solution to the nonlinear problem; - ,.
rshould be u.

Parameters: a and B are Physical parameters. Three
cases are given: (1,2), (1,1000) and (2,2). AW AM 12 * *

MC.~

PROB 46lgeociodnmcs[9I u u -8 =0 I ~!8
xx yy y

.3=0Csa w W A M A W i mLO W MIA M iaIADOMAN [Oa] x[0,1 ii

BC u0 fr xO~a;u~lfory~l;u=- fo yA

Soluio Aprxmate sutinge for 4 1aes u=Ii fory

I Right sie-Zr
Boundary~~ip' codtosIiihe

3(- = 1, 8 an 2

-~~F FERES.: 008.06 000.30 300.00 010.7 .25
MIN -1.053 MVIX: 1.0313- I

.0__ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ __ _ _ __1__ _ _ _ _ _ 0 2 I'
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~XI

__ _ __ _ _ __ _ _ __ _ _ __ _ _ __ _ _ __ _ _ 46

A=. a=-.!~U.



I PHO~ 47 Artificial
u u+ u =f

xx Y J.6
DOMAIN unit square i
BC U =g
TRUE (C/2

Operator: Laplace
Right siae: variable singularities
Boundary conditicns: Dirichiet E
Solution: Singularity of variable streigth.
Parameter: ai adjusts singularity strength.

PRW-E.I!7- 2 32C PROLE Al

PL&Ew

IE /

JPROB 48 &Nonlinear diffusion in catalysts [21 ______

0u +-u -1.425r e (~lr)(+(~)u 0 ______

DOMAIN unit square 5

BC u =1
TRUE Unknown /

Op-erator: Helmholtz type, homogeneous
Right side: Zero

4 Boundary conditions: Dirichlet
-Solution: Approximate solution given for r =r(x,y.)

tab~ulated from a nonlinear POE solver; r should be U-1

~Parameters: (z,8,Y) are physical parameters. to cases
~given: (1,.04,2), (1,.04,25), (2,.012,2), (2,.04,25) _________

ad (2,.5,2). 0
R-W -%CC

i3 2 8--.0~O4. C=2' 8 1 2. J.%. C23

§54,1<

.. IZip
fail g

X Al -; 3W _XA

I xV



PROB 49 %onlinear a,,.; iyst [2) a:
U + u u f

DOMAIN mzit square :
TRUE tUnknown

Opraor elmholtz type .1
Right side: Complicated i
Bc*.zndary conditions: Dirichiet
Solution: Approximate solution given for r =r (x,y) a a

tabulated from a solution to the nonlinear problem; rI

should be u,2

Parameters: (c,S,y) are physical parameters. Four Aw -V AC _BCi

Z c a e a e g i e .-2, ., ) ( 1 , 5 , 2 5 ),:( 27 64  21  a n d P G M E I 9 2

9=SC =2-

if! ' IC\\
'I

i~iI !

4/l
IV J.-j I~x

ut 0
xx *M

DOMAI [0,1 [0,6
t i C Jsn : - ~ - - -

TRUE- ~x ,~=~ ~ ,. . 1; s~n- , v

P'dROB condi-i-.oc:

j~ ~ +~lin untir
j ~ ~ x Vrntes gn

DOMAN [0 ] xjo~l

K3 ~iv =
TRUE\

3sin (1,-)sinx snh31-v~in~ sih-(-x~in7

4 in~, ihV / V-

: ,--,eator La'Lac , hmogeeou
R~a-;t sid: Zer

BounaV,- coditionc- r

Soluton: ntir

: araeters Non 1.*l

- -~ ____



-'RCOBLEM 1:

BCx u0 fo 2 1;
DOMAIN unit square x+u= fo

TRUE Unknown UN=yo ~=;A ~ y

operator: Singular coefficients

Right side: Constant '
Boundary conditions: Mixed 1A \'~

A =xj] < a B(x) fVx
Solution: Has singiularity, unusual behavior.I
Parameters: a adjusts position of chance in boundary --.- iLW

JE - condition for y 1. 1 .
oROBLEm 5,.- e R1:j&M 51- 3 PROBLEM Si- 4

xc N

P ROB 52 Nonlinear reaction (21
r (u +u +lr u +r u CU 0 A=xx yy 1lx 2 y

DOMAIN unit square
BC U+u NU=
TRUE Uinw

Operator: Expanded from self-adjoint PDE, homogeneous.
Right side: Zero
Boundary conditions: Mixed
Solution: Approximate solution for r(x,y) tabulated

from nonlinear PDE solver; r should be ll/ (1+ l0u)~
ir 1 ,r are finite diff(-r' n-'Q for r .r

12 y
P-arameter: a L r-

PROBLEM 52- P RIK.EM 52- 2 PROBLEM S2- 3

1 :2. :4r

C- Z

2-23



PROB 53 ArtifiilV

xx yy[ DOMAIN unit square
SBC U =g

TRUE cos (ay) sin ($ (xy))

Operator: HelmholtzI Right side: Entire
Boundary conditions: Dirichiet
Solution: Entire, oscillatory

Parameters: a can make operator nearly singular. 6

adjusts the oscillations of the solution.

OBAEL53- 53- 3 PROBL~t 3

(A1(A_=1 .A51.) 0010

X X

6IPROBLEM6Si7-

P RO 54Artif icial
(12x)u +(lI-A 2 )u +2xu +l6yAu -(1+(8y-x-4) 2)u f

xxy X YA(y) =4y
2 + a

DOMAIN unit square..................
BC U= g3
TRUE B = max(0,(3-x/A(y)) ],C =maxf0, x-A (y)

--B/
D = 0 if C <.02, D e "~if C > .02

2 3 2
u(xy)= 2.25x(x-A(y)) (l-D)/(4A(y) )+l/(l+(8y-x-4)

Operator: Expanded form of self-adjoint operator.

Analytic.
Right side: Complicated with possible wild behavior.

Boundary conditions: Dirichlet

Solution: Wildly behaving for a possible, hasPRBE542

singularities for x 4y2 a or 4y 2  _ a.

4to

A2-24



P ROB 55Conducting fluid in magiwt;, fi )a I

U +U =0
xx yy

DOMAIN [0,6] x [0,1]
BC u=0 for x=0; u=f for x=6; Au+Bu =g for y=O,

TRE Unknown Cu+Du =-h f,)r v=i

Operator: Laplace, homogeneous
Right side: Zero
Boundary conditions: Mixed and complicated:

f(y) =l- si(ty2/

A~x) = B(x)A x >c a x>a

x~x < aixc or k = 1J0 x < cior k--I
(0 x > a and k =2 fl x>tciandk=2

i2ax/a3 X>Ci le ka3 >c and K=2
Solution: JIas singularities at houndaries, widely vary-

ing behavior.
Parameters: a: 6 are physical param*Aters, c selects

'R different physical models. Four cases are civen.

FERTIA~1. CC.13^C.1C520C0.53,cl1 3. a 1, 3 3, 2
KM-013HX 1.643~ 3. a 3, 62, c 1 4. ct =6, 8=2, =2

-

P~E SFEATURES-.CC8.12 000.00 OCS.20 01.3.35 U ' ~

IRI.B:3 .2
FMVSi 3"S.15 CCQ. C35 2C C2.'.C

MIN: - 4-X '..5483

----------- \

0M X M C ow W3 z~ W G 35 . 2-0 352 6", .2 , ~ ~ ,~

* Z2.. C2FETL,S. CC8.-, 07 . C 052 CCS.;

XC 322 1 ."i w 25 M ~ M.n t M 33 32= 3 32 -r "w Q&

.,2-2 .-
M

V -~ ~ - -
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PROB 56

1. 1u + -u +-U = 0
Uxx x x 2 yy

x
DOMAIN [0,1] c [0,2i]
BC u=g
TRUE , -ZkxJiny -Z XCOSy 2n

w [e cos(zkxcosy)+e cos(zkxsinY j. , a x cos(2ny)
k n

Gauss weiqhts wk and points zk depend on a, a = (1,.5, 1 I/6,-l/i0,-i/15,l/30,-i/50)

Operator: Singular coefficients, homogeneous"
Right side: Constant

Boundary conditions: Mixed

Solution: series expansion approximates electrosta -cs solution.

Pararneters: x = order of Gauss quadrature for inteqral, 8
= no. terms in expansion.

. ': ".53 :3C.8W C3C.35 050.25
233 .17 .W33 0 1 957 23 2 2 5w 2. 917 .333 3.750 4.167 4.503 S,0W 6.417 5.3 6 2w0

EiURS 05-5 =. 4 350.40 y

- = ^.0 8 0 .=

Wl .53Y2) !.5 2 2S1 | 3.333 3.750 4.,IU ,L 83, saw 5.417 $.am3 fim

FEATURES: 050.53 1 N.60 ,)30.35 050,25 y

C 2

-r.ITURES: 050.58 100.80 030.45 ,O50.-"
jo 4'il AM3 1 ewO ;.as, e a 2'.5w 2.91 3 ..7 1 IV' '.,o 5.?MX 5.-17 5 033 f i ,W

U, . 17

S- 0 -;-

PEATORES: 0S0.58 :.C.80 030.,E -5C.40

X 1 . 250 1 0b) 2 / 2 917 3333 .7 I 5 6 r . 5533 6.953

CD Xs §
'P J o 6
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